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An efficient high-order approach to multi-dimensional problems with
boundary or interior layers is presented. It combines a coarse grid penalty-
spectral element method with a local one-dimensional asymptotic approxima-
tion. The solution so obtained is improved by numerical manipulations on
the same coarse grid. Examples of interior and boundary layer problems are
presented. Q 1997 Academic Press

1. INTRODUCTION

Singular perturbation problems arise frequently in solid mechanic, flow and heat
transfer, and semiconductor device simulation [1–3]. They usually occur when the
coefficient of the highest-order derivative in the governing differential equation, «,
satisfies « ! 1. In this case the solutions exhibit narrow boundary layers of a
characteristic width depending on «. Solutions for this type of problem can be
obtained by numerical methods, asymptotic techniques [4], or hybrid methods [5]
which are based on a combination of numerical and asymptotic solutions. Singular
perturbation problems become increasingly more difficult to solve numerically as
« becomes smaller. Indeed, if a uniform grid is used, a large number of grid points
would be required to resolve the boundary layers or, an adaptive nonuniform
mesh could be used [6, 7, 4]. However, it remains a challenge to obtain accurate
results efficiently.

Asymptotic methods are useful if it is possible to obtain an approximate solution
in terms of the small parameter «. For such singular perturbation problems, the
asymptotic solution is usually composed of an inner solution, which is valid in the
neighborhood of the boundary layer and an outer solution which is valid away from
the boundary layer. The order of accuracy of the asymptotic approximation is
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O(« j11), where j is the order of the asymptotic expansion. Flaherty and O’Malley
[10] developed an algorithm which solves numerically for the inner and outer
asymptotic solutions using a standard numerical method. A representative hybrid
technique is the ‘‘booster method’’ [5] which combines an asymptotic solution of
accuracy O(« j11) [10] with standard discretization methods. By this method, the
numerical error is reduced by a factor O(« j11). The booster approach could be
difficult to implement for multidimensional problems in complex geometries, when
an asymptotic solution cannot be easily obtained. A more accurate procedure, albeit
a much more expensive one, is to replace the asymptotic inner or outer solutions
by multidimensional numerical solutions [12].

In this work we present an alternative way to efficiently obtain asymptotic solu-
tions for multidimensional boundary and interior layer problems. An approximate
solution, uA , which is a composite of an inner solution, ui , and an outer solution,
uo , is calculated. The outer solution which is valid away from the boundary layer
is not an asymptotic solution of the reduced problem but a solution to a modified
problem. It is calculated numerically on a coarse mesh (see Section 3). The inner
solution, ui , is valid in and in the neighborhood of the boundary layer (see Section
4). The solution for uA is of a low computational cost because its outer component
is calculated numerically on a coarse grid in the domain of the problem while
its inner component involves only one-dimensional analytical computations. This
composite solution is used as a first approximation and is improved by solving a
modified equation numerically on the same coarse grid as for the outer solution
(see Section 5).

2. OVERVIEW OF THE METHOD

Let us consider a boundary value problem for the partial differential equation:

«=2u 1 V ? =u 1 au 5 f for x [ V, (1)

where u, f, V, are functions of x [ V , Rd and d is the number of space dimensions.
We assume that: « is a small positive parameter, a is a negative constant; f(x) may
have a finite number of jump discontinuities while u is once differentiable in V and
piecewise twice differentiable.

Let Gb be the part of the boundary, G ; ­V, which supports a boundary layer,
and let Gg be the complement of Gb in G. We assume that

u 5 Ug on Gg (2)

and

u 5 Ub on Gb (3)

and lead to a unique solution of the problem.
The solution of (1)–(3) may exhibit two types of layers: interior or boundary

layers. Boundary layers are located at boundaries of the domain (i.e., Gb). Their



860 ZRAHIA, ORSZAG, AND ISRAELI

thickness and location depend on the angle between the characteristic curves of
the reduced equation (obtained by setting « to zero in (1)) and the boundary [1].
Interior layers can appear, e.g., at interior discontinuities of f(x), at singularities of
the reduced equation, or along characteristics of the reduced equation.

Problem (1) has often been considered as a test case for numerical schemes. It
is known that most numerical methods fail when the cell Reynolds number v Dx/«
becomes O(1). Here Dx is a typical mesh size and v 5 maxV(x)(uV u).

The steps of our new algorithm are:

(i) The numerical solution of (1) is obtained on a fixed coarse grid with a
special set of boundary conditions. This solution serves as a first approximation to
the outer solution, uo (see Section 3);

(ii) A set of one-dimensional boundary layer equations obtained from (1) are
solved along the inner normal emanating from each point of Gb (see Section 5);

(iii) The outer solution, uo , and the inner solution, ui , are matched to obtain
an approximate composite solution, uA (see Section 4);

(iv) Correction terms are computed and added to the right-hand side of the
discrete approximation of (1). This corrected discrete approximation is solved to
obtain an improved solution, uI (see Section 5);

(v) We replace uA in (ii) by uI and steps (ii)–(iv) are repeated until the new
improved solution, uI , agree with the approximate solution, uA , to a specified
tolerance (see Section 6).

In Section 7 we present numerical results for problems exhibiting interior or
boundary layers.

3. OUTER SOLUTION

The outer solution, u0 , which is valid only far from boundary or interior layers
is obtained by solving the differential equation (1) subject to the boundary conditions
u 5 Ug on Gg and suitable boundary conditions on Gb as described below. Following
Kellogg and Tsan [13], it can be shown that the effect of the boundary conditions
on Gb decays exponentially towards the interior of the domain. We chose the
boundary conditions on Gb so that the outer solution has small gradients near Gb .
This way it is possible to increase the numerical accuracy of the outer solution
calculated on a given (typically coarse) mesh. The same argument is applied to
interior layers: we replace continuity conditions on both sides of the interior layer
with a set of conditions designed to reduce the effect of the layer on the overall
solution. There are two possibilities for such boundary conditions as described
below:

• ‘‘Natural boundary conditions’’ which are obtained from the weak formulation
of the problem.

• ‘‘Improved outer boundary conditions’’ which are based on asymptotic argu-
ments.
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3.1. Boundary Layer Case

3.1.1. Problem Definition

Here the two possible formulations for an outer solution.

I. Natural Boundary Conditions. The outer solution satisfies Eqs. (1)–(2) and
the boundary condition:

n ? =u 5 0 on Gb (4)

which replaces (3). Here, n is the unit vector normal to Gb ; Eq. (4) is naturally
satisfied for a weak formulation of (1).

The exact solution of (1), (2), (4) converges to the exact solution of (1)–(3) far
from Gb . It is possible to show that the magnitude of the gradient of the solution
to (1), (2), (4) is smaller than the gradient of the typical solution to (1)–(3), by a
factor of « near Gb .

II. Improved Outer Boundary Conditions. Here the outer solution satisfies Eqs.
(1)–(2) subject to the following ‘‘improved’’ outer boundary condition:

Vn
­u
­n

1 au 2 f 5 0 on Gb , (5)

where Vn is the component of V in the direction of the normal to Gb .
This boundary condition is derived using the following asymptotic argument.

Assume that the outer solution can be expanded as

uo(x, «) p Oy
j50

uoj«
j (6)

and substituted into (1). To O(«), we obtain

V ? =uoo 1 auoo 5 f in V (7)
subject to

uo0 5 Ug on Gg . (8)

If the solution to (1)–(3) is free of an interior layer, then the solution to (7)–(8)
is smooth and satisfies (5) on Gb . The difference between the solution to (1)–(3)
and uo0 is O(«) as « R 0 in the interior of V. Here we suggest solving Eq. (1)
subject to (2) and to (7) to obtain a numerical approximation uo . While the natural
boundary condition (4) reduces the error of a numerical solution for uo by a factor
of «, the ‘‘improved boundary condition’’ (5) reduces the same error by a factor «2.

The choice of boundary conditions is based on the accuracy of the inner solution.
In general we would like to have a balanced scheme so that the accuracy of the
inner and outer problems should be of the same order.



862 ZRAHIA, ORSZAG, AND ISRAELI

3.1.2. Penalty Spectral Elements Formulation for uo

The solution of (1), (2), (4) is obtained numerically using a spectral method with
a polynomial basis in each of the d-space dimensions. The calculated solution is
smooth and converges to the exact solution far from the boundary layer when the
polynomial degree of the approximate solution N R y for fixed «.

A penalty spectral element formulation is used for the solution of the outer
problem. The spectral element method [14] is chosen since the outer solution is
expected to be smooth (without large gradients) and therefore this method can
achieve an accurate outer solution with a small number of degrees of freedom.

We define the space H 1(V) to consist of all functions that are in L2(V) and whose
first derivatives are also in L2(V). Applying the weighted residual method gives
the following weak formulation to u [ H 1

E,Gg
(V):

2 EE
V

« =w ? =u dV 1 EE
V w(V ? =u) dV 1 EE

V

awu dV

1 lE
Gb

w(u 2 Ub) dGb 5 E
V

wf dV ;w [ H 1
0,Gg

(V). (9)

Here w is the weighting function

H 1
E,Gg

(V) 5 hv [ H 1(V)uv(x) 5 Ug , x [ Ggj

H 1
E,Gg

(V) 5 hv [ H 1(V)uv(x) 5 0, x [ Ggj,

where the subscript E indicates that essential boundary conditions are applied on
Gg . In (9), Dirichlet boundary conditions on Gb are imposed as penalty terms. When
we solve the outer problem, we do not impose these conditions so l is set to be
zero. As a result, Neumann boundary conditions are naturally satisfied on Gb . We
apply a penalty formulation in order to have the flexibility to use the same formula-
tion (9) for both the outer solution (l 5 0) and for the improved solution (in which
l @ 1) as will be shown in Section 6.

Applying a penalty spectral element approach to (9), we first specify a discretiza-
tion pair h 5 (n, N). The computational domain, V, is broken up into n macro-
elements (spectral elements) so that V 5 on

e51 Ve. An approximate solution, uh, is
obtained by Lagrange interpolation of order N 5 (Nx , Ny , Nz) with respect to x.
The space of uh is taken to be the subspace X h of H 1

E,Gg
consisting of all piecewise

high-order polynomials of degree #N with respect to x so that

X h(V) 5 hF [ H 0(V), FuVe (10)

[ FN(x)j > H 1
E,Gg

(V).The spectral element formulation is

2 EE
V

« =wh ? =uh dV 1 EE
V

wh(V ? =uh) dV

1 EE
V

awhuh dVe 1 l E
Gb

wh(uh 2 Ub) dTb

5 E
V

whf dV ;wh [ Z h. (11)
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Here with wh lies in the subspace Z h so that

Z h(V) 5 hF [ H 0(V), FuVe [ FN(x)j > H 1
0,Gg

(V). (12)

The integrations in (11) done using Gauss–Lobatto–Legendre quadrature leading
to a set of algebraic equations.

3.2. Interior Layer Case

Let us assume for simplicity that we consider the case in which f(x) is piecewise
continuous with jumps along a surface o trying in V. The choice of boundary
conditions on the outer solution is as follows.

3.2.1. Problem Definition

I. Natural Boundary Conditions on o. Here we apply

n ? =u 5 0 (13)

on each side of the surface o.

II. Improved Boundary Conditions on o. Here the differential equation (1) is
approximated on o by dropping the term proportional to « (assuming that « is
small). The resulting improved boundary condition is

V ? =u 1 au 5 f (14)

on each side of o.

3.2.2. Penalty Spectral Element Formulation

The spectral element formulation for Eqs. (1), (2), subject to (13) or to (14), is
similar to the one obtained for the boundary layer problem (see Section 3). Here,
in order to obtain Neumann boundary conditions on o, l should equal zero. The
outer solution is discontinuous across o so that [u(x)]o ? 0. In this case, the spectral
elements weighting function wh should also be discontinuous across o so that
[wh(x)]o ? 0. Under these conditions the spectral element formulation is a straight-
forward variant of the boundary layer spectral element formulation.

As in the boundary layer formulation, large l forces continuity for the solution
u and for the normal derivative, n ? =u, on o.

The penalty method as presented here is more efficient for the numerical treat-
ment of interior layers than a standard spectral element method. In the latter case,
additional assembly is required, while in the present approach the same spectral
element matrices are needed for both the outer and the improved solutions. These
matrices only differ by the terms which are multiplied by l.
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4. INNER SOLUTION

The outer solution is valid only far from Gb or o and, thus, should be corrected
by an inner solution, ui , which is valid near these surfaces. That is, we seek an
asymptotic approximation ui to u 2 uo . In order to investigate the solution in the
neighborhood of Gb or o we first employ a coordinate transformation x 5

(x, y) R (j, h). Here, for simplicity, we assume that d 5 2. For a point x close to
Gb or o, let us define a coordinate system (j, h) originating on the boundary point
x0 that lies closest to x. Let h be the coordinate tangential to this boundary and let
j be a stretched variable in the direction normal to the boundary. The transformation
(x) R (j, h) for V , R2 is given locally near Gb or o by

x(j, h) 5 xo 1 «jn, (15)

where n 5 [2(­yo/­h)/(­xo/­h)] is the unit normal at x0 . The inner solution, ui , is
obtained by substituting the asymptotic expansion:

ui(j, h; «) 5 Oy
n50

uin(j, h)«n (16)

into (1) and equating the leading-order terms. Outside corner regions, we then
obtain a one-dimensional second-order differential equation in the local coordi-
nate j.

Near a boundary layer, the inner solution, ui , should satisfy the boundary condi-
tions:

ui(j 5 0, h) 5 Ub(h) 2 uo(j 5 0, h)
(17)

ui(j R y, h) 5 0 ;h [ Gb .

And near an interior layer

ui(j 5 0(2), h) 1 uo(j 5 0(2), h) 5 ui(j 5 0(1), h) 1 uo(j 5 0(1), h)

ui(j R 6y, h) 5 0 ;h [ o. (18)

The values for uo in (18) are taken from the outer solution process which was
obtained according to Section 3.

These one-dimensional problems are defined for each h on the boundary. They
are to be solved along rays orthogonal to the boundary Gb or o and originating at
grid points lying on these boundaries.

The resulting inner solution gives the approximate solution

uA(x; «) 5 uo(x) 1 ui(j(x), h(x)) (19)

which is an O(«) approximation through V.
If there is a corner in Gb , the inner problem cannot be reduced to a one-dimen-

sional problem in the vicinity of this corner. For simplicity, let us assume a two-
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dimensional domain with one corner in Gb which is located at the origin of the
x 2 y coordinate system and that its two edges coincide with the x and y directions,
respectively. The values of the outer solution near the corner are updated twice:
first, after the computation of the x-boundary layer, and then after the computation
of the y-boundary layer. This second update mostly affects the solution in the
corner where the x and y boundary layers meet. The extension to three-dimensional
problems is then straightforward. A more accurate procedure, albeit more expen-
sive, is to use a multidimensional inner solution in corners.

5. IMPROVED SOLUTION

The ‘‘booster method,’’ introduced by Israeli and Ungarish [5], exploits analytic
asymptotic approximations (or possibly other approximation methods) to obtain
an accurate global approximation to the solution of a partial differential equation
on a coarse grid. The method is summarized as follows.

For a linear partial differential equation,

L(u) 5 f in V, (20)

subjected to appropriate boundary conditions, a numerical solution un is usually
obtained directly from

Lh(un) 5 fh in V, (21)

where Lh and fh are the discretized approximations for L and f. Instead, in the
‘‘booster method,’’ we use an approximate analytic solution, uA of (20) to obtain
an improved solution uI from

Lh(uI) 5 Lh(uA) 2 L(uA) 1 fh in V. (22)

The error of the improved solution, eI , obtained by the booster method can be
estimated by (see [5])

ieI i j P cj ieni j ? ieAi j , j 5 0 ? ? ? y, (23)

where en denotes the error of a numerical solution of the problem and eA is the
error of the approximate solution.

The discretized approximations Lh and fh are calculated according to the penalty-
spectral element formulations as described in Section 4. Here l is set to be large
enough. In order to estimate its value for the case of an interior layer problem, we
should first rewrite the continuity condition across o. Instead of satisfying the
continuity condition, the following condition is valid across o:

l[u(x)] 5 n ? =u on O (24)

which is a weak form of the continuity condition. The normal derivative n ? =u(x)
on o can be written as a function of the stretched, normal to n, coordinate j so that
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n ? =u(x) 5
1
«

­u
­j

on O (25)

and thus the continuity requirements for the solution are related to

[u(x)] P
1

l«

­u
­j

on O, (26)

where the value of ­u/­j is of O(1) if « is of the order of the layer width.

6. SUMMARY OF THE ALGORITHM

6.1. Steps of the Algorithm

The algorithm proposed here is summarized as follows:

1. The outer solution, u0 , to (1) is obtained numerically on a coarse grid using
(11) and letting l tend to zero.

2. The inner solution, ui , is obtained analytically according to Section 5.

3. The two solutions, u0 and ui , are matched according to (32) to obtain an
‘‘analytic’’ approximation, uA , to the exact solution (32).

4. Equation (22) is solved (on a coarse grid) using an appropriate choice for l.

5. The outer part of uI is substituted into uA and step 2 is repeated until conver-
gence is attained. The outer part of uI is calculated by subtraction of ui from uI .

6.2. Interpolated Solution

The numerical solution, uI , is a discrete solution calculated at the nodal points
of the elemental grid. Intermediate values for the solution, uI(x), cannot be obtained
by direct interpolation using the spectral element basis since the solution does not
belong to the space spanned by this basis [11]. Let us first write the matrix form
of (22) as

KuI 5 f 1 (KuA 2 f A), (27)

where K and f are the stiffness matrix and right-hand vector respectively obtained
from the spectral elements formulation of (1)–(3). The vector f A equals L(UA).
Or alternatively,

K(uI 2 uA 1 K21f A) 5 f. (28)

If we define

um 5 (uI 2 uA 1 K21f A) (29)

then

Kum 5 f. (30)
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The function um(x) satisfies (30) and, thus, belongs to the space spanned by the
spectral element basis. Therefore um(x) can be expressed as

um(x) 5 IN(um), (31)

where IN is the spectral-element interpolation operator based on Legendre–Gauss–
Lobatto points. The analytical approximation is composed of the numerical outer
solution, uo , and the analytical inner solution, ui(j(x)h(x), so

uA(x) 5 uo(x) 1 ui(j(x), h(x))
5 IN(uo) 1 ui(j(x), h(x)). (32)

The inner solution, ui , is analytical and continuous in j(x) but it is discrete in h(x).
As a result we can write for each discrete point hn an analytical solution ui(j, hn).
The inner solution at h ? hn can be calculated by a one-dimensional Lagrange
interpolation formula of order N. That is because of the restriction that the variation
of the inner solution in the h direction is determined by the outer solution which
is spanned by the spectral element basis.

If we introduce the booster term

ur 5 K21f A (33)

with

ur(x) 5 IN(ur). (34)

Then, the improved solution uI is expressed as

uI(x) 5 IN(uo) 1 ui(j(x)) 1 IN(K21f A)
5 IN(uo 1 K21f A) 1 ui(j(x)). (35)

7. NUMERICAL EXAMPLES

7.1. Two-Dimensional Problem with a Boundary Layer

Here we apply the method described above to the two-dimensional convection-
diffusion problem:

«=2u 1 V ? =u 5 0 x [ (0, 1)2

u(x, 0) 5 0
u(x, 1) 5 Ïx (36)
u(0, y) 5 0
u(1, y) 5 Ïy,

where V 5 (1, 1).
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FIG. 1. Solution for a two-dimensional problem (« 5 8 3 1023): (a) Reference (high resolution)
solution; (b) Numerical (spectral) solution un , N 5 13; (c) Improved solution uI , N 5 13.

For this problem we seek a solution composed of an outer solution, uo , and an
inner solution, ui , as follows:

uA(x; «) 5 uo(x) 1 Oy
n5o

(uin«n. (37)

The solution for uo is two-dimensional and is computed as described in Sections
3–4. For the inner solution (setting n 5 0 in (37)) the following one-dimensional
differential equation must be solved in the direction normal to Gb :

d 2ui

dj 2 1
dui

dj
5 0 ;h [ Gb (38)

The solution to (38), is subject to the boundary conditions (17), is:

ui(j, h) 5 Ub(h) 2 uo(j 5 0, h)]e2j ;h [ Gb (39)

and the approximate solution, uA , is

uA(x) 5 uo(x) 1 [Ub(h) 2 uo(j 5 o, h)]e2j ;h [ Gb . (40)

In Fig. 1a we plot a reference solution of (36), obtained by numerical solution
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of (36) on a very fine grid. In contrast, the results for a coarse numerical solution,
un , using one spectral element of order Nx 5 Ny 5 13, are plotted in Fig. 1b. The
latter solution oscillates throughout the domain. Increasing the number of elements
with fixed Nx , Ny leads to smaller wiggles in the solution because of the reduced
coupling between the elements as compared with a fully spectral solution. In Fig.
1c we plot the improved solution uI obtained using the same coarse grid mesh
(Nx 5 Ny 5 13) as for the fully spectral solution un . The error distribution arising
from the fully numerical solution, un , and from the different stages of the solution
are presented in Figs. 2a–d. The error of the numerical solution is ieniy 5 0.13
(Fig. 2a). The error of the present solution after the first analytical correction
(obtained on the edge x 5 0) is still large on the boundary (the edge y 5 0) on
which the correction has not yet been performed (Fig. 2b). As expected, the error
norm after the correction on all boundaries (Fig. 2c) attains its maximum value
near the corners (ieaiy 5 0.17). Using the mixed analytical numerical procedure
(22) leads to a final solution with error norm ieI iy 5 4 1022 (Fig. 2d).

In order to show the efficiency of the present solution, we define a ratio which
is based on (23) as follows:

k 5
ieI iy

ieniy ? ieAiy
. (41)

The value of k was estimated for various polynomial degrees and several values
of «. The boundary conditions were chosen so that an analytical reference solution
can be found. The results for k are summarized in Table I.

For all the values of N and « considered here, k is found to be O(1). For sufficiently
small values of «, the method shows an improvement over the fully numerical
method. The approximate solution is weakly affected by the polynomial degree of
the outer solution since the error eA is composed of the error of the numerical
outer solution and the error of the inner analytical solution, which is dominant.

The efficiency of the improved solution compared to a fully numerical solution
can be evaluated using the results plotted in Fig. 3. We assume that the number
of operations which are needed for a numerical solution is of order of p3, where p
is the total number of degrees of freedom. For « 5 3 3 1023 and N 5 11 the error
obtained from the improved solution is ieI iy 5 1.69 3 1022. In order to get a
numerical error similar to the error of the improved solution, the polynomial degree
of the spectral solution would have to be increased to N P 35 (see Fig. 3) (even
with the highly efficient boundary layer resolution of such a polynomial spectral
method). This result means that the ratio, Ef(«), between the number of operations
for the two solutions is

Ef(0.003) P S 352

2 112D3

P 130 (42)

and for « 5 0.005 (see Fig. 3),

Ef(0.005) P S 252

2 112D3

P 20. (43)
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FIG. 2. Error distribution (« 5 8 3 1023): (a) Numerical solution ieniy 5 0.13; (b) First correction
ieiy 5 0.97; (c) Second correction ieAiy 5 0.17; (d) Improved solution ieIiy 5 4 3 1022.

The algorithm was also applied to problems with different values of « in the x
and y directions of V. If the value of « is high enough in one of the directions the
correction could be done only for the second direction in which « is small (see Figs.
4, 5). In this case the source of the wiggles is from the x direction so that there is
no need to correct the solution in the vicinity of the y boundary.

When a ? 0 in (1) and the velocity of the advection term is parallel to the
boundary (V 5 [1, 0]) two types of boundary layers are present: one of order «
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TABLE I
Errors of the Different Procedures (2D Case)

N 7 « ⇒ 0.01 0.008 0.005 0.003

11 ieniy 3.50 3 1021 5.40 3 1021 1.14 3 100 2.19 3 100

ieAiy 3.31 3 1021 1.74 3 1021 8.29 3 1022 3.10 3 1022

ieI iy 3.55 3 1022 2.49 3 1022 2.38 3 1022 1.69 3 1022

k 0.306 0.265 0.251 0.248

14 ieniy 1.01 3 1021 1.61 3 1021 3.29 3 1021 5.04 3 1021

ieAiy 3.30 3 1021 1.72 3 1021 8.25 3 1022 3.11 3 1022

ieI iy 1.10 3 1022 9.20 3 1023 1.21 3 1022 5.13 3 1023

k 0.33 0.33 0.44 0.32

16 ieniy 4.80 3 1022 8.80 3 1022 2.20 3 1021 4.00 3 1021

ieAiy 3.1 3 1021 1.74 3 1021 8.22 3 1022 3.09 3 1022

ieI iy 1.80 3 1022 6.43 3 1023 6.15 3 1023 4.8 3 1023

k 1.21 0.42 0.34 0.38

18 ieniy 2.03 3 1022 6.00 3 1022 1.46 3 1021 3.17 3 1021

ieAiy 3.02 3 1021 1.69 3 1021 8.11 3 1022 2.99 3 1022

ieI iy 1.73 3 1022 5.03 3 1023 3.12 3 1023 2.52 3 1023

k 2.85 0.49 0.26 0.27

and a second one of order Ï«. In such a case we often need to improve only the
solution near the boundary layer of order «. In Fig. 6 we present the results for a
test problem: the reference numerical solution is shown in Fig. 6a. A fully numerical
spectral solution based on a low order polynomial approximation (N 5 13) produces

FIG. 3. Efficiency of the improved solution.
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FIG. 4. A two-dimensional problem with anisotropic « («x 5 1 3 1022, «y 5 5 3 1022): (a) Reference
solution; (b) Numerical (spectral) solution un , N 5 13; (c) Improved solution uI , N 5 13.

a large oscillatory error because of the x direction boundary layer [0(«)]. The
calculated outer solution, u0 , is presented in Fig. 6c and is free of oscillations. The
hybrid solution can be calculated by matching this solution with a one-dimensional
solution, ui (Fig. 6d). This solution is much more accurate than the fully numerical
solution which is based on the same coarse grid (Figs. 6e, f).

7.2. One-Dimensional Problem with an Interior Layer

The present algorithm can be applied to the solution of problems having interior
layers. To illustrate this, let us consider the following one-dimensional problem:

«2uxx 2 u 5 2f(x), x [ (20.5, 0.5). (44)

The outer solution for this equation is calculated numerically as in Sections 3, 4
and the inner solution, ui(j), should satisfy the equation:

d 2ui

dj 2 2 ui 5 uo 2 f, j [ F2x1

«
,
1 2 x1

«
G, (45)
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FIG. 5. The effect of various options at a fixed x coordinate (x 5 0.92): (a) Analytical correction
ieAiy 5 0.184; (b) Numerical solution ieniy 5 0.131; (c) Improved solution ieI iy 5 4.9 3 1022.

where x1 is the location of the interior layer and j 5 (x 2 x1 1 0.5)/«. For the
inner problem it is convenient to use f(x) as an approximation for uo , since the
difference between them is of O(«). The solution for (45) is

u(2)
i (j) 5 Aej 1 Be2j, j # 0,

(46)
u(1)

i (j) 5 Dej 1 Ee2j, j $ 0.

The solutions to both equations should satisfy the conditions that ui 5 0 for j R

y so that

u(2)
i (j) 5 Aej, j # 0,

(47)
u(1)

i (j) 5 Ee2j, j $ 0.

The coefficients A and E are evaluated after applying continuity conditions to both
the solution, uA , and its derivative so that
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FIG. 6. Solution of a two-dimensional problem with different types of boundary layer («x 5 «y 5

5 3 1023; a 5 24; v 5 [1, 0]): (a) Reference solution; (b) Numerical (spectral) solution un , N 5 13; (c)
Outer solution uo , N 5 13; (d) Improved solution uI , N 5 13; (e) Comparison between the different
solutions in the x direction on a fixed line y 5 20.86; (f) Comparison between the different solutions
in the y direction on a fixed line x 5 20.34.

2A 5 u(1)
o (xt) 2 u(2)

o (xt) 1 « Sdu(1)
o (xt)
dx

2
du(2)

o (xt)
dx

(48)

2E 5 2u(1)
o (xt) 2 u(2)

o (xt) 1 « Sdu(1)
o (xt)
dx

2
du(2)

o (xt)
dx D .

As a first example we will consider the case where f(x) is discontinuous at x1 5 0.5,

f(x) 5 H (4x 2 1)2, if 0 # x , 0.5,
2(4x 2 1)2, if 0.5 , x # 1.



875SPECTRAL ELEMENT/ASYMPTOTIC METHOD

TABLE II
Errors of the Different Procedures for Discontinuous f(x)

N 7 «2 ⇒ 2 3 1025 1 3 1025 5 3 1026 2 3 1026

10 ieniy 2.97 3 1022 2.31 3 1022 1.42 3 1022 5.93 3 1023

ieAiy 6.40 3 1024 3.20 3 1024 1.64 3 1024 6.40 3 1025

ieI iy 1.29 3 1025 9.15 3 1026 1.37 3 1026 2.39 3 1027

k 0.68 0.67 0.61 0.63

11 ieniy 2.96 3 1022 2.73 3 1022 1.86 3 1022 8.39 3 1023

ieAiy 6.40 3 1024 3.20 3 1024 1.64 3 1024 6.37 3 1025

ieI iy 1.76 3 1025 6.99 3 1026 2.20 3 1026 4.12 3 1027

k 0.92 0.81 0.74 1.00

13 ieniy 2.28 3 1022 2.96 3 1022 2.66 3 1022 1.49 3 1022

ieAiy 6.40 3 1024 3.20 3 1024 1.64 3 1024 6.40 3 1025

ieI iy 2.31 3 1025 1.29 3 1025 4.83 3 1026 9.97 3 1027

k 1.50 1.37 1.12 1.04

15 ieniy 1.35 3 1022 2.48 3 1022 2.97 3 1022 2.22 3 1022

ieAiy 6.40 3 1024 3.20 3 1024 1.64 3 1024 6.40 3 1025

ieI iy 2.85 3 1025 1.77 3 1025 8.44 3 1026 1.72 3 1026

k 3.2 2.26 1.76 1.40

In Table II we present the maximal error at nodal points for different values of
the polynomial degree, N, and «. For the particular differential equation under
consideration the numerical solution does not produce wiggles for low values of «

(Fig. 6) because it converges to a solution of linear algebraic equations for « R 0.
When the first derivative of u was present in the equation, the numerical solution
was less accurate and much more oscillatory (like the two-dimensional boundary
layer case). A plot of the different steps of the solution is presented in Fig. 7 for
the case « 5 2 3 1025 and N 5 15. The inner solution is discontinuous and decays
to zero far from the boundary layer. Our final example is the case where f(x) is
chosen so that it is continuous within the domain but has a discontinuous derivative
at some point within the domain. We choose f(x) 5 ux 2 0.5u so that

u(2)
o (xt) 5 u(1)

o (xt)
(49)

du(2)
o (xt)
dx

5 2
du(1)

o (xt)
dx

5 O(1).

For this problem the solution uA is

uA 5 uo 1 O(«)e2uj u. (50)

From Table III we can see that for this example the improved solution is much
more accurate than both the numerical and analytical approximations. As shown
in (27) the numerical and the analytical approximations are of the same order for
low values of «. For such problems it may be worthwhile to improve the results by



876 ZRAHIA, ORSZAG, AND ISRAELI

FIG. 7. The solution with range 0 # x # 0.5 (« 5 2 3 1025, N 5 15): (a) Different stages of the
solution; (b) Error distribution.
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TABLE III
Comparison between the Various Stages of the Solution and a Numerical Solution for

Discontinuous df(x)/dx

N 7 «2 ⇒ 1 3 1025 5 3 1026 2 3 1026 1 3 1026 7 3 1027

11 ieniy 0.399 0.544 0.698 0.783 0.818
ieAiy 0.400 0.345 0.254 0.192 0.165
ieI iy 8.0 3 1022 5.9 3 1022 3.38 3 1022 2.26 3 1022 2.24 3 1022

k 0.5 0.314 0.19 0.15 0.17

12 ieniy 0.317 0.470 0.643 0.742 0.787
ieAiy 0.413 0.377 0.291 0.224 0.193
ieI iy 8.5 3 1022 7.23 3 1022 4.3 3 1022 3.25 3 1022 3.28 3 1022

k 0.65 0.407 0.230 0.196 0.22

14 ieniy 0.182 0.328 0.526 0.651 0.704
ieAiy 0.393 0.412 0.354 0.285 0.250
ieI iy 7.7 3 1022 8.5 3 1022 6.32 3 1022 6.08 3 1022 6.36 3 1022

k 1.07 0.629 0.339 0.32 0.36

18 ieniy 4.14 3 1022 0.127 0.301 0.454 0.528
ieAiy 0.24 0.356 0.414 0.383 0.353
ieI iy 2.98 3 1022 6.33 3 1022 8.4 3 1022 7.1 3 1022 2.56 3 1022

k 2.95 1.45 0.67 0.4 0.17

using a ‘‘mixed’’ numerical solution. Instead of solving for the original differential
equation (see (21)) two new variables (u and the derivative of u) can be defined.
The correction can then be computed only for the derivative of u.

7.3. Two-Dimensional Problem with Boundary and Interior Layers

As a final example we consider

« =2u 2 u 5 f, x [ (0, 1)2, (51)

subject to Dirichlet boundary conditions,

u 5 5 on G1

u 5 1 on G2 .
(52)

The domain V is divided by o into two subdomains V1 and V2 so that V 5 o <

V1 < V2 (Fig. 8) and the source function:

f(x) 5 H x3 1 y3 on x [ V1

2(x3 1 y3) on x [ V2 .

The solution for (51)–(52) exhibit boundary layers near G1 and G2 and an interior
layer near o. Our outer solution, u0 , satisfy Eq. (51). It is discontinuous in o and
as a result is calculated separately in each of the subdomains V1 and V2 . The outer
solution in V1 is subject to the boundary conditions
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FIG. 8. Domain of solution.

uo 5 2(x3 1 y3) on G1 < o (53)

and the solution in V2 is subject to

uo 5 x3 1 y3 on G2 < o. (54)

The inner solution is valid near the boundary and interior layers and it satisfies

d 2ui

dj 2 2 ui 5 0 ;h [ o < G1 < G2 . (55)

Equation (55) is subjected to boundary conditions (17), (18). The outer solution is
plotted in Fig. 9a. After correction in the layer regions and an improvement step
we get the solution (Fig. 9b). Our coarse mesh solution is based on five elements,
each of order 5 in the x and y directions. The differences between our solution and
a fully numerical solution are plotted in Figs. 9c, d.

8. CONCLUSIONS

The aim of this work was to present an efficient high-order method of some
generality for the solution of multidimensional problems with boundary and interior
layers. Our approach exploits the fact that the boundary layer can be approximately
treated as a one-dimensional problem. In that way, the solution is straightforward
and does not depend on the dimensionality of the problem. The solution away from
the boundary layer is obtained by using a spectral element method. The number
of degrees of freedom required to obtain the solution is small, because the outer
solution does not have a boundary layer and, thus, the spectral convergence is
retained. In order to deal with both boundary and interior layers, we used a penalty
spectral element method for the numerical solution so that the outer solution and
the improved solution are calculated on the same grid and there is no need to
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FIG. 9. Two-dimensional problem with interior and boundary layer (« 5 1 3 1026): (a) Outer
solution; (b) Improved solution; (c) Numerical solution, N 5 7; n 5 5; (d) Numerical solution, N 5 15;
n 5 5.

change the structure of the coefficient matrices. We believe that the new method
will be useful for a variety of problems involving interior and boundary layers, such
as semiconductor device simulation problems [15, 16].
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